Asia Pacific Air Quality Group Real-Time WBGT Monitoring

Occupational Heat Stress

- Heat stress occurs when accumulation of heat in the body exceeds the body's ability to remove the excess heat
- Outdoor construction, military, athletes, firefighters, agricultural
- Indoor boiler rooms, factory, welders, kitchen

Occupational Heat Stress - Factors

- Combination of environmental factors, metabolic heat and clothing
- Vulnerability increased by:
 - Exposure to high temperatures
 - High humidity
 - Low air movement
 - Direct radiation
- Higher metabolic heat from physical exertions
- Clothing affects perspiration

Occupational Heat Stress - Risks

- Rising temperature increases risk of workplace heat injuries
- Higher susceptibility in local hot and humid climate
- Hot work environment

Occupational Heat Stress - Monitoring

- Management of heat stress can be aided by monitoring relevant indexes
- Quick and accurate understanding of conditions and assessment of overall risks achievable through real-time monitoring
- Most commonly assess WBGT index as primary approximation

Why Monitor Heat Stress

- Risk control measures
- Reduce risk of heat injuries, accidents, illnesses and deaths
- Reduce productivity losses
- Real-time evaluation of operative thermal conditions and timely definition of work:rest times
- Improve ESG performance

ESG Performance

- Reducing heat stress ensures employee safety
- Optimize work-rest cycles
- Improves productivity
- Reduces injuries
- Improves employee satisfaction and engagement
- Overall improvement in social aspect

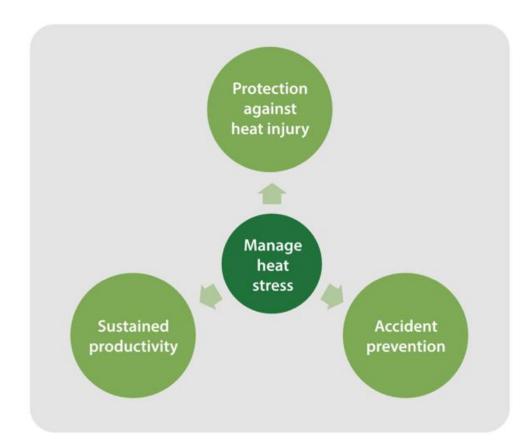


Fig 1: Heat Stress Management (Managing Heat Stress in the Workplace, WSH Council)

Real-time WBGT Monitoring

- WBGT index widely used for evaluating heat stress
- Monitors physical quantities for assessment using actual high-quality sensors
- Portable or permanent systems
- Deployed in indoor and/or outdoor conditions
- Real-time calculate, store and display results

Types of Real-time WBGT Monitoring

- Portable device
- Permanent indoor systems
- Permanent outdoor system

Real-time WBGT Monitoring System Standard

- Compliance to relevant ISO standards
 - ISO7143:2017 methodology to produce WBGT heat index calculations
 - ISO7726 minimum characteristics of instruments for measuring physical quantities of thermal environment

Real-time WBGT Monitoring Parameters

- Other relevant indexes
 - WBGT Effective
 - WBGT Reference
 - Heat Index
 - WBGT with/without solar load

ISO 7243:2017 – Scope

- Assessment of heat stress using WBGT index
- Screening method for evaluating heat stress
- Screening method for establishing presence or absence of heat stress

ISO 7243:2017 – Scope

- Applies to evaluation of effect of heat on a person during total exposure over the working day, up to 8 hours
- Applies to assessment of indoor and outdoor occupational environments
- Does not apply for very short exposures to heat

ISO 7243:2017 – WBGT Index

- Wet bulb globe temperature (WBGT) index represents the thermal environment to which an individual is exposed
- WBGT index is easy to determine in most environments
- Screening method to establish presence/absence of heat stress
- Combines measurement of natural wet-bulb temperature (t_{nw}), black globe temperature (t_g) and air temperature (t_a)

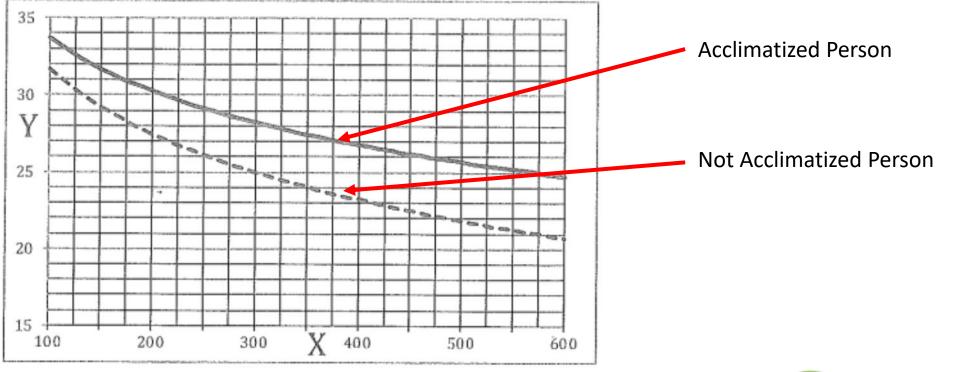
ISO 7243:2017 – Formula

- WBGT with solar load
 - WBGT = 0.7t_{nw} + 0.2t_g + 0.1t_a
- WBGT without solar load
 - WBGT = 0.7t_{nw} + 0.3t_g
- T_g is affected by air temperature, mean radiant temperature and air velocity, T_{nw} is found to be affected by relative humidity

ISO 7243:2017 – Factors

- Degree of heat stress to which a person is exposed to depends on:
 - Characteristics of environment governing heat transfer between ambient environment and body
 - Production of heat inside the body as a result of physical activity
 - Clothing worn which modifies the exchange of heat with the environment

ISO 7243:2017 – WBGT Indexes


- WBGT Effective (WBGT_{eff}) WBGT value adjusted for the effects of clothing considering Clothing Adjustment Value (CAV)
 - WBGT_{eff} = WBGT + CAV
- WBGT Reference (WBGT_{ref}) WBGT limit value for acclimatized and notacclimatized subjects according to metabolic rate and activity level
- If WBGT_{eff} > WBGT_{ref}, further actions are required

ISO 7243:2017 – WBGT Reference

• Different limit values for acclimatized and not-acclimatized subjects according to metabolic rate:

ISO 7726:1998 – Scope

- Specifies minimum characteristics of instruments for measuring physical quantities of thermal environment
- Specifies **methods** for measuring the physical quantities
- To standardize process of recording information leading to determination of indices
- Reference to establish specifications for manufacturers and users

ISO 7726:1998 – Siting

- WBGT normally measured at abdomen level
- When parameters in the surrounding space not homogeneous, measurement made at position where heat stress is highest
- If not possible to situate sensors at normal place of work, place them where they are exposed to the same influence from the environment

Globe Temperature Sensor

- Globe temperature assesses the total radiant heat load from the sun and other sources
- Globe temperature sensor is a 150mm-diameter copper sphere painted matte black with a thermometer in the middle.
- Other diameter sizes requires correction formula which requires air speed value – additional sensor and more error introduced
- Minimum 0.95 emission coefficient

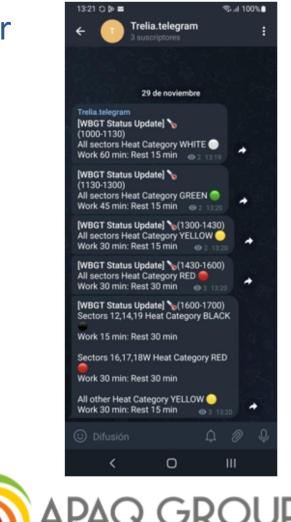
Wet Bulb Temperature Sensor

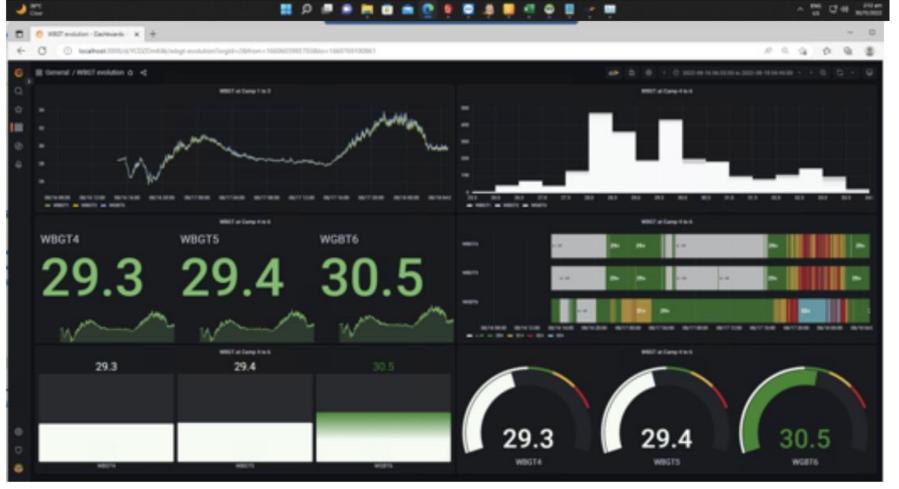
- Natural wet bulb temperature, t_{nw}, assesses the lowest air temperature obtainable from evaporative cooling
- T_{nw} sensor is a thermometer enclosed inside a cotton sock wetted by water from a water tank, with natural ventilation
- Temperature sensor should be protected against direct sunlight
- Water tank should be protected against warming by sunlight

Wet Bulb Temperature Sensor

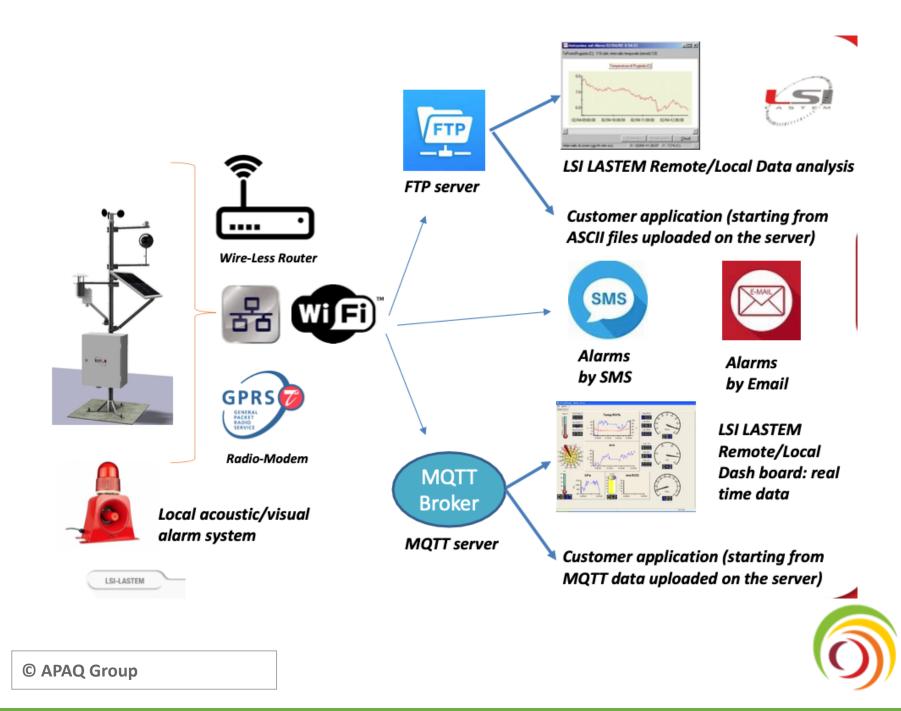
- Direct real measurement of t_{nw} from actual sensor recommended and preferable
- "Water-free" solution not advisable as such calculation is neither simple nor reliable, especially when air velocity is low
- Calculated t_{nw} values would have associated measurement errors that would accumulate in calculation of WBGT index

Air Temperature Sensor


- Measures dry bulb temperature
- Sensor must be protected from direct solar radiation such as radiation screen
- WMO-compliant sensor would ensure highest accuracy



Data and Alerts from Real-Time Monitoring


- Real-time remote data transmission via wireless router such as via MQTT/FTP protocols
- Data viewing on local SCADA/DCS
- Data display online dashboard
- Telegram channel broadcast
- Integration with application
- Trigger local/remote alarms

Data and Alerts from Real-Time Monitoring

IFIC AIR QUALITY GROUP

Types of Real-time WBGT Monitoring

- Portable device
- Permanent indoor system
- Permanent outdoor system

Portable Hand-Held Heat Stress Device

- Suitable for surveying and short-term monitoring campaign, indoor or outdoor
- Stand-alone models or with built-in radio for simultaneous wireless monitoring in different locations/heights
- Data display on screen
- Mountable on tripod

Portable Heat Stress Device

- Real-time portable system on a tripod
- Suitable for short-term monitoring outdoor
- Meteorological grade sensors
- Data logger and battery in weatherproof enclosure
- Data display on screen


Standalone Single-Position Indoor Solution

- Real-time dashboard on PC (local)
- Data reporting on PC (local or remote)
- Connection to local SCADA via Modbus RTU
- Connection to local PC

Standalone Multi-Position Indoor Solution

- Permanent multiple positions indoor installation
- Built-in radio and repeaters if necessary

Standalone Outdoor Solution

- Meteorological grade sensors
- Made for harsh environments
- Can be solar-powered
- Can be dismantled and assembled easily – transportable to various locations

Standalone Outdoor Solution

- Meteorological grade sensors
- Made for harsh environments
- 24/7 operation
- Can be solar-powered

Reference: NEA Heat Stress Network

- Using 'WBGT Index' to evaluate heat stress.
- >10 stations around sports facilities

Challenges and Workarounds

- Siting of the monitoring system choose as representative as possible
- Accuracy of measurements high quality sensors and data logger designed to be compliant to ISO standards
- Maintenance and calibration periodic calibration every 2 years by accredited laboratories
 - Sensor accuracy verification

Thank you!

🕓 SG +65 6635 1387 🕓 ID +62 21 2960 7367 📨 info@apaq-group.com 🌐 www.apaq-group.com

Air Quality Matters

