

What is Confined Space?

Definition

- Is not intended for continuous occupancy
- Has an opening large enough for one's torso and head to pass either intentionally or unintentionally
- Has the potential for a hazardous environment or a configuration where emergency response would be difficult

Confined Spaces entry remains a high risk activity in Process Industry

- Hazards are not obvious / visible / dynamic
 - Mechanical, electrical, pressure, chemicals, temperature
 - Contaminants generated during work
- Difficult emergency response
 - Entrant to exit
 - Rescue teams to enter

Examples of Confined Spaces

- Process vessels (e.g., towers, drums, reactors)
- Storage tanks (including floating roof pontoons)
- Spheres
- Silos/hoppers
- Exchanger shells
- Vessel skirts and stacks
- Boilers, Heaters, and Furnaces

- Sewers, Tunnels, and Pipelines
- Air Blower Ducts
- Excavated trenches or pits greater than 1.25 m in depth where there is a risk of exposure to harmful/toxic vapors, or engulfment
- Enclosed basement at sub-station
- Equipment sheeted-in for weather protection, asbestos stripping, or spark containment without sufficient open area to maintain adequate natural ventilation

Pipe

Tank

Trenches

Ballast Tank

Potential Confined Space Hazards

Atmosphere inside a Confined Space may be contaminated by any of the following sources:

- Inadequate ventilation (Oxygen deficient atmosphere)
- 2. Vaporization of residual hydrocarbons (Combustible atmosphere)
- 3. Inadequate cleaning of residual materials
- 4. Work that generates contaminants
 - E.g. Welding, painting, application and removal of liners in vessels
- 5. Connection of a nitrogen or other utility/gas hose to the Confined Space
- 6. Improper/inadequate isolation of process piping
- 7. Leakage of gas cylinders/hoses inside the space
- 8. Contaminants drawn into the Confined Space from the outside
 - E.g. Diesel engine or vacuum truck exhaust

Other Physical Hazards

- 1. Excessive noise
- 2. Elevated temperature
- 3. Engulfment exposure hazards
- 4. Internal moving or powered equipment hazards
- 5. Ergonomic issues
- 6. Radiation sources
- 7. Slips, trips, falls and impact

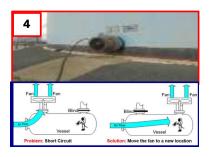
Safeguards for CSE – Planning & Preparation

Hazard Assessment

- Prior to entry, hazards of confined space must be assessed and analyzed
- Include mechanical integrity of internal structures / components
- Mitigations must be taken to reduce risks to an acceptable level

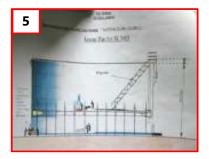
Remove Residual Materials

 Confined space must be drained, flushed, purged, cleaned and ventilated to minimize the amount of residual hazardous material present



ExconMobil

Control the Atmosphere in Confined Space


- Must be positively isolated from all potentially hazardous material either by blinding or disconnecting and blanking all process lines connected to the space
- All energy sources and electrically equipment must be de-energized and secured e.g. steam valves, mixers, soot blowers
- When blinding is not practical, lines running through the confined space should be isolated and depressurized and tracked

Safeguards for CSE - Planning & Preparation

Maintain a Safe Atmosphere

- Adequate and effective ventilation must be maintained at all times during entry
- Consider nature of the residual hazards present, any fumes/vapors from mechanical work being performed
- Additional exhaust ventilation must be considered for removal of fumes from burning or welding, vapors from painting/coating activities
- Provide sufficient lighting

Emergency Rescue Plan

- Develop jointly by work group and emergency response personnel
- Drills for complex and elevated confined space entries (e.g. tower entry, top entry reactors, and vessels with baffles, etc.) must be proven to be executable

ExconMobil

Atmosphere Testing

- Atmosphere inside and outside the confined space must be tested by a trained and competent person
- Evaluate the hazards inside and outside of the confined space when developing the gas testing requirements
- Gas Testing Parameters
 - Must be gas tested at sufficient locations
 - Must be tested for O2 content, flammability, Presence of other toxic and harmful vapors
 - Confirm acceptable gas test results

Safeguards for CSE - Execution

Pre-task Talk / Toolbox talk

- Barricade and Signage
- Safe Work Procedures
- Safe Entry Conditions
- Job Stoppage Condition
- Emergency Response

Continuous Monitoring

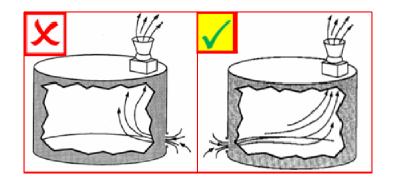
- Control of Entry
- Atmospheric Testing
- Energy Isolation (LOTO)
- PPE / RPE



Safe Access & Egress

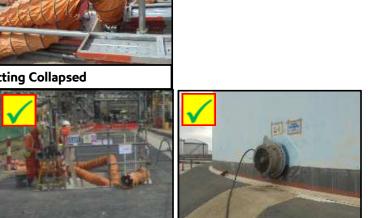
Control Entry

JOB STOPPAGE CONDITION

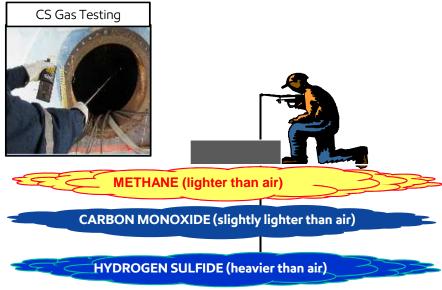

- When 4in 1 gas meter sounds an alarm
- Ventilation failure
- When rapid rise in temperature is seen
- Any emergency inside/outside the confined space
- Any sign of distress from the entrants
- Temperature/oxygen level exceeds allowable limit
- Loss of primary lightings

Field Effectiveness Verification

Hazards Recognition


Defensive Safe Behaviour

Effective vs Presence of Safeguards



Effective Ventilation

Summary

- Confined Space Entry is a high risk activity
- Planning and Preparation
- Field Execution Effectiveness vs Presence of Safeguards
- Confined Space injuries and deaths can be prevented if everyone follows the precautions EVERY TIME